Medallion Architecture Blueprint | CONFIDENTIAL

MEDALLION ARCHITECTURE
BLUEPRINT

Bronze - Silver - Gold Layer Design for Microsoft Fabric

	BRONZE
Raw Data Landing
	SILVER
Canonical Model
	GOLD
Data Products

Version 1.0 | January 2026

Table of Contents

1. Introduction to Medallion Architecture
The Medallion Architecture (also known as Multi-Hop Architecture) is a data design pattern that organizes data in a lakehouse into three distinct layers: Bronze (raw), Silver (cleansed), and Gold (business-ready). This pattern provides progressive data quality improvement, clear data lineage, and separation of concerns between data engineering and consumption.
1.1 Why Medallion Architecture?
Traditional data warehouses often suffer from complex ETL pipelines that transform data in a single monolithic process. When issues arise, troubleshooting requires understanding the entire pipeline. The Medallion Architecture addresses these challenges by decomposing transformations into discrete, auditable stages.
Key Benefits
1. Progressive Quality: Data quality improves systematically through each layer
1. Replayability: Raw data preservation enables reprocessing when logic changes
1. Debuggability: Clear layer boundaries simplify troubleshooting
1. Flexibility: Different consumers can access appropriate layers
1. Governance: Each layer can have distinct access controls and retention policies
1. Scalability: Layers can be optimized independently for their access patterns
1.2 Medallion Layers Overview
	Layer
	Purpose
	Data Characteristics
	Typical Consumers

	Bronze
	Raw data landing zone
	Source format, minimal transformation
	Data engineers for debugging

	Silver
	Cleansed canonical model
	Standardized, deduplicated, validated
	Advanced analysts, data scientists

	Gold
	Business-ready data products
	Aggregated, denormalized, optimized
	Business users, reports, dashboards

1.3 Fabric Implementation
In Microsoft Fabric, Medallion Architecture is implemented using Lakehouses and Delta Lake tables. Each layer can be a separate Lakehouse or organized as schemas/folders within a single Lakehouse, depending on organizational needs.
	Approach
	When to Use

	Separate Lakehouses
	Large organizations, different teams own different layers, need distinct capacity/security

	Single Lakehouse
	Smaller teams, simpler governance, all layers managed together

	Hybrid
	Bronze separate (platform team), Silver/Gold combined (domain teams)

2. Bronze Layer Design
The Bronze layer is the foundation of Medallion Architecture—the immutable landing zone for raw data from source systems. Its primary purpose is preserving source data exactly as received, enabling full replayability of downstream transformations.
2.1 Bronze Layer Principles
Principle: Preserve Source Fidelity
Bronze data should match source data exactly. Avoid transformations that could lose information or make it impossible to reconstruct the original source state.
1. Maintain original column names (even if poorly named)
1. Preserve original data types where possible
1. Keep null values as nulls (do not default)
1. Store raw JSON/XML as strings if parsing might lose data
Principle: Immutability
Once written, Bronze data should not be modified. New data is appended; corrections come from source system re-extractions. This enables full audit trail, ability to replay transformations, compliance with retention requirements, and debugging back to source.
Principle: Capture Metadata
Enrich Bronze data with ingestion metadata to enable troubleshooting and lineage tracking:
1. _ingestion_timestamp: When the record was loaded
1. _source_file: Source file name or API endpoint
1. _batch_id: Unique identifier for the ingestion batch
1. _source_system: Identifier for the originating system
2.2 Bronze Table Design
Naming Convention
Use consistent naming that identifies the source system and entity:
brz_{source_system}_{entity_name}
Examples: brz_sap_customers, brz_salesforce_opportunities, brz_api_transactions
Schema Design
	Column Category
	Example Columns
	Notes

	Source Columns
	All original columns
	Exactly as received from source

	Ingestion Metadata
	_ingestion_timestamp
	Timestamp when record was loaded to Bronze

	Source Tracking
	_source_file, _batch_id
	Identifies where the record came from

	Processing Flags
	_is_deleted
	Soft delete flag for CDC sources

Partitioning Strategy
Partition Bronze tables by ingestion date to optimize both write performance and downstream query patterns:
PARTITIONED BY (_ingestion_date DATE)
This enables efficient pruning when processing incremental loads and simplifies data retention management.
2.3 Bronze Ingestion Patterns
Pattern: Full Extract
Entire source table extracted on each run. Suitable for small reference tables or sources without CDC capability.
1. Simple implementation—no watermark tracking
1. Higher storage cost due to duplicates
1. Use _ingestion_timestamp to identify latest version
1. Deduplicate in Silver layer
Pattern: Incremental Extract
Only new/changed records extracted based on watermark column (modified_date, sequence_id).
1. Efficient for large tables
1. Requires reliable watermark column in source
1. Must handle late-arriving data
1. Track high watermark in control table
Pattern: CDC (Change Data Capture)
Capture insert/update/delete operations as a stream of changes.
1. Preserves full change history
1. Enables SCD Type 2 in Silver
1. Requires CDC-enabled source or log-based extraction
1. Store operation type (_cdc_operation: I/U/D)
2.4 Bronze Data Quality
Bronze layer should have minimal data quality rules focused on technical validity rather than business rules:
1. Schema validation: Required columns present, correct data types
1. Completeness: Expected row counts within tolerance
1. Freshness: Data arrived within expected timeframe
1. Duplicates: Acceptable duplicate handling strategy documented
Note: Business rule validation belongs in Silver layer. Bronze should accept all technically valid data even if it violates business rules.

3. Silver Layer Design
The Silver layer transforms raw Bronze data into a cleansed, standardized canonical data model. This layer applies data quality rules, handles deduplication, conforms data types, and creates an enterprise-consistent view of entities.
3.1 Silver Layer Principles
Principle: Single Version of Truth
Silver provides one authoritative representation of each entity, reconciling data from multiple sources where necessary. A customer record in Silver represents the canonical customer, not a copy of what CRM or ERP said.
Principle: Enterprise Conformance
Apply consistent standards across all data regardless of source:
1. Standardized date formats (ISO 8601)
1. Consistent null handling
1. Unified code values (status codes, type codes)
1. Common naming conventions
1. Aligned grain (one record = one entity instance)
Principle: Quality Enforcement
Silver is the first layer where business data quality rules are enforced. Invalid records should be quarantined for review rather than silently dropped.
3.2 Silver Table Design
Naming Convention
slv_{domain}_{entity_name}
Examples: slv_customer_master, slv_claims_header, slv_provider_network
Schema Design
	Design Principle
	Implementation

	Primary Keys
	Every table has a surrogate key (sk_*) plus natural business key

	Referential Integrity
	Foreign keys to related Silver tables; enforce in queries if not in storage

	Normalization
	3NF-light: normalized enough to avoid anomalies, denormalized for query efficiency

	Temporal Tracking
	SCD Type 2 columns for entities requiring history (effective_date, end_date, is_current)

	Audit Columns
	created_date, modified_date, source_system, dq_score

3.3 Silver Transformation Patterns
Pattern: Deduplication
Remove duplicate records from Bronze based on business key, keeping most recent or highest quality record.
-- PySpark deduplication pattern
window_spec = Window.partitionBy('business_key').orderBy(desc('_ingestion_timestamp'))
df_deduped = df.withColumn('row_num', row_number().over(window_spec))
 .filter(col('row_num') == 1).drop('row_num')

Pattern: SCD Type 2
Track historical changes to slowly changing dimensions by maintaining multiple versions with effective dates.
1. Insert new version with current effective_date
1. Update previous version's end_date to current effective_date
1. Set is_current = true only on latest version
1. Use MERGE operation for efficient implementation
Pattern: Conformance
Map source-specific codes to enterprise standard values:
1. Status codes: Map 'A', 'Active', '1' to 'ACTIVE'
1. Date formats: Convert all dates to yyyy-MM-dd
1. Currency: Standardize to base currency with conversion rate
1. Units: Convert to standard units (metric, etc.)
Pattern: Entity Resolution
Merge records from multiple sources that represent the same business entity:
1. Define matching rules (exact match, fuzzy match)
1. Establish source priority for conflicts
1. Create cross-reference table linking source IDs to canonical ID
1. Document resolution logic for auditability
3.4 Silver Data Quality Framework
Quality Dimensions
	Dimension
	Description
	Example Rules

	Completeness
	Required fields are populated
	customer_id NOT NULL

	Validity
	Values within expected domain
	status IN ('ACTIVE','INACTIVE')

	Consistency
	Related values are logically consistent
	end_date >= start_date

	Uniqueness
	No unintended duplicates
	business_key is unique

	Timeliness
	Data is current as expected
	modified_date within 24 hours

	Accuracy
	Values match real-world truth
	zip_code matches city/state

Quality Handling
Records failing quality rules should be handled systematically:
1. Quarantine: Move to error table for investigation
1. Flag: Mark with dq_score and continue processing
1. Reject: Block from Silver until corrected
1. Alert: Notify data stewards of quality issues

4. Gold Layer Design
The Gold layer delivers business-ready data products optimized for specific consumption patterns. Gold transforms Silver's canonical model into purpose-built structures—dimensional models, aggregations, denormalized views—that serve business users, reports, and applications.
4.1 Gold Layer Principles
Principle: Consumption-Optimized
Gold structures are designed for how data will be consumed, not how it's stored. Query patterns, user skills, and tooling requirements drive design decisions.
Principle: Business Semantics
Gold tables use business terminology familiar to consumers. Technical or source-system language should not appear in Gold schemas.
Principle: Self-Service Ready
Gold data should be understandable and usable by business users without requiring deep technical knowledge or data engineering support.
4.2 Gold Table Design
Naming Convention
gld_{domain}_{data_product}_{optional_variant}
Examples: gld_sales_revenue_summary, gld_claims_analytics_cube, gld_member_360_profile
Design Patterns
	Pattern
	Use Case
	Characteristics

	Star Schema
	BI reporting, dashboards
	Fact tables + dimension tables; optimized for aggregations

	Wide Table
	ML features, ad-hoc analysis
	Single denormalized table with all attributes

	Aggregate Table
	Executive dashboards
	Pre-computed summaries at various grains

	Cubes/OLAP
	Multi-dimensional analysis
	Measures + dimensions for slice-and-dice

	Data Product API
	Application integration
	Views/endpoints designed for specific consumers

4.3 Star Schema Design
Star schema is the most common Gold pattern for BI and reporting workloads. It consists of a central fact table surrounded by dimension tables.
Fact Table Design
1. Contains measurements (metrics, KPIs) that business wants to analyze
1. Grain: One row per transaction/event/measurement
1. Foreign keys to dimension tables
1. Additive measures (sum, count) where possible
1. Date/time dimension key for time-series analysis
Dimension Table Design
1. Contains descriptive attributes for analysis context
1. Surrogate key as primary key
1. Business key for natural identification
1. Denormalized for query simplicity (snowflake avoided)
1. Slowly Changing Dimension handling where needed
Common Dimensions
	Dimension
	Description
	Key Attributes

	dim_date
	Calendar and fiscal date attributes
	date_key, year, quarter, month, week, is_holiday

	dim_time
	Time of day attributes
	time_key, hour, minute, am_pm, time_band

	dim_customer
	Customer/member master
	customer_key, name, segment, region, tenure

	dim_product
	Product/service catalog
	product_key, name, category, brand, price_tier

	dim_geography
	Location hierarchy
	geo_key, country, state, city, zip

4.4 Gold Optimization
Partitioning
Partition Gold fact tables by the most common filter dimension, typically date:
PARTITIONED BY (report_date DATE)
Z-Ordering
Apply Z-order clustering on columns frequently used in filters and joins:
OPTIMIZE gld_claims_fact ZORDER BY (claim_type, provider_key)
V-Order
Enable V-Order for tables consumed by Power BI Direct Lake. V-Order is automatically applied when writing Delta tables in Fabric and optimizes columnar storage for Power BI's in-memory engine.
Aggregation Tables
Create pre-aggregated tables for common summary queries:
1. gld_sales_daily_summary: Daily totals
1. gld_sales_monthly_summary: Monthly rollups
1. gld_sales_ytd_summary: Year-to-date calculations
1. Balance freshness vs. performance based on use case

5. Quality Gates Between Layers
Quality gates are checkpoints between medallion layers that ensure data meets defined criteria before progressing. They prevent bad data from propagating through the architecture and provide clear accountability for data quality.
5.1 Bronze to Silver Gate
Gate Criteria
	Check Type
	Description
	Action on Failure

	Schema Validation
	All required columns present with correct types
	Block processing

	Row Count
	Record count within expected tolerance
	Alert + proceed or block

	Freshness
	Data arrived within SLA window
	Alert + proceed

	Null Threshold
	Critical columns have acceptable nulls
	Quarantine records

	Duplicate Threshold
	Duplicate rate within tolerance
	Alert + deduplicate

5.2 Silver to Gold Gate
Gate Criteria
	Check Type
	Description
	Action on Failure

	Business Rules
	All business validation rules pass
	Flag or quarantine

	Referential Integrity
	FK relationships valid
	Block until resolved

	Aggregation Balance
	Gold totals match Silver source
	Block + investigate

	SLA Compliance
	Data product refreshed on schedule
	Alert stakeholders

	Trend Analysis
	Metrics within expected variance
	Alert for review

5.3 Implementation Pattern
Implement quality gates as a reusable framework:
1. Define rules in configuration (not hard-coded)
1. Execute checks before each layer transition
1. Log results to quality audit table
1. Generate quality scorecard per table/pipeline
1. Alert on failures based on severity
1. Block or proceed based on configured thresholds

6. Implementation Guidance
6.1 Lakehouse Structure
Recommended folder structure for medallion implementation in Fabric Lakehouse:
/Tables
 /bronze
 /brz_source1_entity1
 /brz_source1_entity2
 /silver
 /slv_domain1_entity1
 /slv_domain1_entity2
 /gold
 /gld_product1_fact
 /gld_product1_dim_customer
/Files
 /raw_landing
 /archive
 /rejected

6.2 Pipeline Design
Bronze Pipeline
Scheduled ingestion pipeline that extracts from sources and lands to Bronze:
1. Use Data Factory Copy Activity for database sources
1. Use Dataflow Gen2 for API/file sources with transformations
1. Implement watermark tracking for incremental loads
1. Add metadata columns during ingestion
Silver Pipeline
Transformation pipeline that processes Bronze to Silver:
1. Use Spark Notebooks for complex transformations
1. Implement MERGE for upsert operations
1. Execute quality gates before writing
1. Handle rejected records systematically
Gold Pipeline
Aggregation pipeline that builds data products from Silver:
1. Schedule after Silver completion (dependency)
1. Implement incremental refresh where possible
1. Validate aggregations against Silver totals
1. Optimize tables after write (OPTIMIZE, ANALYZE)
6.3 Version Control
Use Git integration for medallion pipeline code:
1. Store notebook code in Git repository
1. Use branching strategy (feature to develop to main)
1. Implement PR reviews for pipeline changes
1. Deploy through Fabric Deployment Pipelines

7. Best Practices and Anti-Patterns
7.1 Best Practices
Bronze Best Practices
1. Never transform Bronze data after initial load—append only
1. Partition by ingestion date for efficient reprocessing
1. Include comprehensive metadata (source, timestamp, batch)
1. Set retention based on replayability requirements
1. Document source system extraction logic
Silver Best Practices
1. Define canonical model before building—don't let it evolve ad-hoc
1. Implement SCD Type 2 for entities requiring history
1. Create surrogate keys for all entities
1. Enforce data quality rules consistently
1. Document business rules and conformance mappings
Gold Best Practices
1. Design for specific consumer needs—don't over-generalize
1. Use star schema for BI workloads
1. Pre-aggregate for performance-critical dashboards
1. Enable V-Order for Direct Lake optimization
1. Document business definitions for all measures
7.2 Anti-Patterns to Avoid
Anti-Pattern: Skipping Layers
Going directly from Bronze to Gold bypasses quality enforcement and canonical modeling. Always process through Silver even if transformations seem minimal.
Anti-Pattern: Gold from Gold
Creating Gold tables from other Gold tables creates brittle dependencies and obscures lineage. Gold should always derive from Silver.
Anti-Pattern: Multiple Writers
Having multiple pipelines write to the same table causes conflicts and makes debugging difficult. Each table should have exactly one writer.
Anti-Pattern: Schema-on-Read in Silver
Silver should have enforced schemas. Leaving data interpretation to consumers defeats the purpose of the canonical layer.
Anti-Pattern: Mixing Grains
Do not mix fact grains in the same table (e.g., daily and monthly records together). Create separate tables for different grains.
7.3 Common Pitfalls
1. Underestimating Bronze storage—raw data grows faster than expected
1. Over-normalizing Silver—balance purity with query performance
1. Creating too many Gold tables—focus on high-value data products
1. Ignoring data quality until Gold—catch issues early in Bronze/Silver
1. Assuming source data is clean—always validate and handle exceptions

Appendix: Quick Reference
A.1 Layer Comparison Matrix
	Aspect
	Bronze
	Silver
	Gold

	Purpose
	Raw preservation
	Canonical model
	Data products

	Transformations
	None (metadata only)
	Cleanse, conform
	Aggregate, denorm

	Schema
	Source-aligned
	Enterprise standard
	Consumer-optimized

	Quality Rules
	Technical only
	Business rules
	Product SLAs

	Retention
	Long (compliance)
	Medium
	Based on use

	Access
	Engineers only
	Analysts, DS
	Business users

A.2 Document Information
	Document Title
	Medallion Architecture Blueprint

	Version
	1.0

	Last Updated
	January 2026

	Classification
	Confidential - Internal Use

Page of
